D. Bump's notes on the Poisson Summation Formula

[These are taken from p.1-2 of Bump's notes on the Riemann zeta function.]

Let f be an L^1 function on \mathbb{R} . Then the Fourier transform of f is defined by

$$\hat{f}(x) = \int_{-\infty}^{\infty} f(y) e^{2\pi i x y} dy.$$

Proposition 1. If $f(x) = e^{-\pi x^2}$ then $f = \hat{f}$.

PROOF. Completing the square,

$$\hat{f}(x) = e^{-\pi y^2} \int_{-\infty}^{\infty} e^{-\pi (x+iy)^2} dy.$$

It is easy to justify moving the line of integration by Cauchy's theorem, and

$$\int_{-\infty}^{\infty} e^{-\pi(y+ix)^2} dx = \int_{-\infty}^{\infty} e^{-\pi y^2} dy.$$

This integral equals one, since it's square equals

$$\int\limits_{\mathbb{R}^2} e^{-\pi(x^2+y^2)}\,dx\,dy,$$

which is easily evaluated by switching to polar coordinates.

Proposition 2 (Poisson summation formula). Suppose that f is a smooth function such that $(1+x^2)^N f(x)$ is bounded for all N. Then

(1)
$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n),$$

PROOF. We introduce the auxiliary function

$$F(x) = \sum_{-\infty}^{\infty} f(x+n).$$

This is absolutely and uniformly convergent, and is a smooth function with period 1. It therefore has a Fourier expansion:

$$F(x) = \sum_{m=0}^{\infty} a_m e^{-2\pi i mx}.$$

-00

We evaluate the coefficients

$$a_m = \int_0^1 F(x) e^{2\pi i mx} dx = \int_0^1 \sum_{n=-\infty}^{\infty} f(x+n) e^{2\pi i mx} dx.$$

Since $e^{2\pi i m x} = e^{2\pi i m (x+n)}$, we may collapse the summation and the integration, and write

$$a_m = \int_{-\infty}^{\infty} f(x) e^{2\pi i mx} dx = \hat{f}(m).$$

Now

$$F(x) = \sum_{-\infty}^{\infty} \hat{f}(m) e^{2\pi i mx}.$$

Putting x = 0 we obtain (1). \square

Although in the explanation above, the Poisson Summation Formula is presented as a straightforward result of Fourier analysis, it is possible to interpret it as a kind of simple "trace formula" on a torus. This is outlined in:

H.P. McKean, "Selberg's trace formula as applied to a compact Riemannian surface", *Communications in Pure and Applied Mathematics* **25** (1972) 225-246.

The PSF is seen in this context as relating the spectrum of the Laplacian on a torus to the lengths of its closed geodesics. This interpretation allows for generalisation, as the torus is a compact Riemann surface of genus 1. A general genus n compact Riemann surface also has a Laplacian spectrum and a set of shortest path lengths in each deformation class, and it turns out that these sets of values can be related according to an analogous formula, essentially the <u>Selberg trace formula</u>.

back to homepage contact